3D vector fields

Contents

• Introduction
• 3D vector field topology
• Representation of particle lines
 – Path lines
 – Ribbons
 – Balls
 – Tubes
 – Stream tetrahedra
• 3D LIC
• Combining different techniques
Introduction

• Extension
 – Many methods of 2D vector fields can be extended to 3D, in particular as far as ODE and cell searching is concerned

• Main problem in 3D
 – Effective mapping to graphical primitives
 – Main aspects
 • Occlusion
 • Amount of (visual) data
 • Depth perception

Introduction

• Approaches to occlusion issue
 – Sparse representations
 – Animation
 – Color differences to distinguish separate objects
 – Continuity

• Reduction of visual data
 – Sparse representations
 – Clipping
 – Importance of semi-transparency
Introduction

• We are concerned with enhancements and special features for 3D vector fields
 – Glyphs
 • Like 2D, more special icons
 – Particle tracing
 • The same as in 2D
 – Time lines → time surfaces
 – P-space vs. C-space
 • Curvilinear grids – like 2D
 – LIC
 • Calculation is no problem, but rendering is difficult (display on 2D-screen, see next section)
 – Qualitative analysis at critical points

3D vector field topology
3D vector field topology

• Assumption
 – Critical point \(\mathbf{x}_0 \)
 \[\mathbf{v}(\mathbf{x}_0) = 0 \quad \mathbf{J}_v(\mathbf{x}_0): \text{Jacobian matrix} \]

• Classification of critical points
 – In 3D, using the 3 eigenvalues of the Jacobian
 – There are 2 main cases
 • 3 real eigenvalues
 • 2 complex conjugate and 1 real eigenvalue

– Eigenvalues: each is real
 • \(\lambda_1 < \lambda_2 < \lambda_3 < 0 \) attracting node
 • \(\lambda_1 < \lambda_2 < 0 < \lambda_3 \) saddle node
 • \(\lambda_1 < 0 < \lambda_2 < \lambda_3 \) saddle node
 • \(0 < \lambda_1 < \lambda_2 < \lambda_3 \) repelling node

– Eigenvalues: 1 real & 2 imaginary (like spiral in bathing tube)
 • \(\lambda_1 < 0 \): attracting relative to 0
 – \(\text{Re}(\lambda_2) = \text{Re}(\lambda_3) < 0 \) attracting focus
 – \(\text{Re}(\lambda_2) = \text{Re}(\lambda_3) > 0 \) repelling focus
 – Orientation of rotation depending on imaginary part
 • \(\lambda_1 > 0 \): repelling relative to 0
 – \(\text{Re}(\lambda_2) = \text{Re}(\lambda_3) < 0 \) attracting focus
 – \(\text{Re}(\lambda_2) = \text{Re}(\lambda_3) > 0 \) repelling focus
 – Orientation of rotation depending on imaginary part
3D vector field topology

Critical points

- **Attracting and repelling point**
 - Flow perpendicular to surface
 - Tangential component of vector field → 0
 - Particle line start / end there

- **Field vortex (ger.: Wirbel)**
 - Motion of flow swirling rapidly around a center
 - Important since these are locations of loss of energy
 - Regions of concentrated vorticity (i.e. flow rotation)

- **Vorticity (ger.: Wirbelstärke or Vortizität)**
 - Central measure in fluid mechanics and meteorology
 - Measures tendency for elements of the fluid to "spin"
 - More formally
 - Related to amount of "rotation" (i.e. local angular rate of rotation) in a flow
 - (Pseudo-) vector field $\mathbf{\omega}$
 - defined as rotation of the velocity field \mathbf{v}:
 $$\mathbf{\omega} = \nabla \times \mathbf{v}$$
3D vector field topology

- **Examples for vortices**
 - Spiral motion with closed streamlines is vortex flow

- **Strategy for 3D vector field algorithms**
 - Find critical points
 - Classify eigenvalues of Jacobian $J_v(x)$
 - Attracting / repelling node
 - Attracting / repelling focus
 - Saddle, center
 - Combine critical points with particle lines
3D vector field topology

• **Separatrices**
 – Occlusion effects of stream surfaces
 ⇒ cluttered and hardly interpretable visualization

Images: Saddle Connectors – An approach to visualizing the topological skeleton of complex 3D vector fields, Theisel, Weinkauf, Hege, and Seidel

3D vector field topology

• **Separatrices** (cont.)
 – Instead use saddle connectors

Images: Saddle Connectors – An approach to visualizing the topological skeleton of complex 3D vector fields, Theisel, Weinkauf, Hege, and Seidel
3D vector field topology

- Example using saddle connectors
 - 13 critical points and 9 saddle connectors
 - LIC shows correspondence of skeleton and flow

3D vector field topology

- Stream line oriented topology of a 2D time-dependent vector field

LIC images at 3 different time slices
Tracking the locations of critical points as stream lines (red / blue / yellow)

Images: Saddle Connectors – An approach to visualizing the topological skeleton of complex 3D vector fields, Theisel, Weinkauf, Hege, and Seidel
Path lines
(Representation of particle lines)

• **Approach**
 – Randomly generate particles in the flow and trace the path of these particles over a specified time interval
 – Choose randomly
 • Starting positions
 • Starting time
 • Life time
 – Encode scalar values by
 • Color
 • Line width of path
 • Stream balls
 • Etc.
Path lines

• Including shading of lines
Path lines

- Glyphs along path line

[Diagram of car with path lines and glyphs along the lines]
Path lines

- Glyphs along path-line

Ribbons
(Representation of particle lines)
Ribbons

• **Approach**
 – Show rotation and divergence
 – Trace two close particles
 • Fill with polygon in between
 • Disadvantages
 – 2 traces
 – Difficult in case of separation (better keep the width constant)
 – Better: direct calculation of rotation
 • Map rotation of vector field directly on particle line
 • Vorticity
 – Measure for rotation of vector field
 • Streamwise vorticity
 – Projection of vorticity on vector of velocity

Ribbons

• **Decomposition of the Jacobian**

\[
J_x(\vec{v}) = \frac{1}{2} \left(J_x(\vec{v}) + (J_x(\vec{v}))^T \right) + \frac{1}{2} \left(J_x(\vec{v}) - (J_x(\vec{v}))^T \right)
\]

\[
= \Lambda + \Omega
\]

(deforation or stretching tensor)

(anti-symmetric
(local rotation)

– Furthermore

\[
J_x(\vec{v}) = \frac{1}{3} \text{spur}(J_x(\vec{v})) \cdot Id + \Sigma + \Omega
\]

• \(\frac{1}{3} \text{spur}(J_x(\vec{v})) \cdot Id\): can be interpreted as the expansion, i.e. local convergence or divergence of the flow field

• \(\Sigma\): symmetric matrix, representing the local shear
Ribbons

– Local rotation Ω
 • This is a skew-symmetric matrix, called vorticity or spin matrix

 • Form of the rotation matrix
 $\Omega = \frac{1}{2} \begin{pmatrix}
 0 & -\omega_3 & \omega_2 \\
 \omega_3 & 0 & -\omega_1 \\
 -\omega_2 & \omega_1 & 0
 \end{pmatrix}$

 where the vector field $\vec{\omega} = (\omega_1 \quad \omega_2 \quad \omega_3)^T$

 is the rotation of the velocity, i.e. $\vec{\omega} = \nabla \times \vec{v} = \text{rot} \, \vec{v}$

Ribbons

– Angle of stream ribbon
 • Assuming Euler’s method (for simplicity only!) for integrating
 the orbit $x_n = x_{n-1} + \tau \vec{v}(x_{n-1})$

 • Let the band vector b (determines direction of the ribbon), be a
 small vector perpendicular to the tangent vector of the orbit
 – Then b is transformed according to
 $b_n = b_{n-1} + \tau \cdot J_x (\vec{v}(x_{n-1})) \cdot b_{n-1} + O\left(\|b_{n-1}\|^2\right)$

 • Neglecting higher order terms, expansion, and shear, it follows
 $b_n = b_{n-1} + \tau \cdot \Omega(x_{n-1}) \cdot b_{n-1}$

 • Local rotation perpendicular to the velocity direction
 – Project the new band vector b after each integration step onto
 plane perpendicular to tangent vector of the orbit
 – Neglect rotation in path direction (already revealed by orbit itself)
Ribbons

• Divergence of vector field
 – Width of ribbon

• Advantage
 – "Curls" of the flow along the flow's direction can easily be recognized
Ribbons
Ribbons

- Aortic Blood Turbulence (by: R. Boon et al.)
 - Velocities and turbulence due to a pump in the aorta
 - Helps to understand how the pump affects blood flow near a patient's heart in order to better design the pump

Ribbons

- Alternative approach
 - Trace two close-by particles
 - Keep distance constant
Balls
(Representation of particle lines)

- Distance of balls
 - Velocity
 - Adaptive step size
- Radius of balls
 - Scalar value

- Disadvantage
 - Many triangles
Balls

Balls

Balls
Stream tubes
(Representation of particle lines)

Stream tubes

- **Polygonal object**
 - Spatial impression
- **Radius**
 - Scalar value
- **Calculation**
 - Circle → trace all elements
 - Trace line → then place circles and combine them
- **Advantage**
 - „Curls“ of the flow along the flow‘s direction can easily be recognized
Stream tubes

Stream tubes
Stream tubes

Density

0.0381 0.669 1.30 1.93 2.56

Stream tubes

Stream tetrahedra

• Combines advantages of balls and ribbons
 – Local rotation + velocity + divergence
 (rotation) (density) (size)
 – Very simple geometry
Stream tetrahedra

3D LIC
3D LIC

- **Calculation**
 - No problem – the same as in 2D

- **Representation**
 - Difficult interpretation
 - Requires volume visualization

- **Additional tools**
 - Clipping (plane, box, …)
 - Animation
 - Transparency
 - …

3D LIC

- **Missing continuity**
3D LIC

• Color differences to identify connected structures

3D LIC

• Animation
3D LIC

• Reduction of visual data
 – Restrict to volume of interest

3D LIC

• Reduction of visual data
 – Application of transparency
3D LIC

- Reduction of visual data
 - Deform clip object based on vector field

3D LIC

- Reduction of visual data
 - Clipping
 - Masking
3D LIC

- Reduction of visual data
 - Clipping

Combining different techniques
Combining different techniques

• **Examples**
 – Frequent combination of different techniques

• **Requirement of interactivity**
 – Efficient implementation
Combining different techniques

Visualization of blood flow